Skip to main content
Log in

Thin film graphene oxide membrane: Challenges and gas separation potential

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Graphene oxide membranes were prepared by vacuum and pressurized ultrafiltration methods on the 12% modified Polyacrylonitrile (12mPAN) substrate to specify challenges, salient features, future directions, and potential of GO membrane for separation fields using characterization techniques and gas separation test (studied gases are CO2, He and N2), which is an efficient tool for better understanding of GO membrane behavior. GO membrane structure was examined over a wide range of parameters, such as pore size range of substrate and its surface properties, pH of GO dispersion, GO content, synthesis pressure, operating pressure and temperature. The results show that the GO content does not hold a linear relationship with the permeance and selectivity. Film thickness, aggregates, synthesis pressure defects and interlayer spacing have significant effects on the gas separation performance of GO membranes which originate from the synthesis method and its conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ha and E. C. John, Korean J. Chem. Eng., 35, 1 (2017).

    Google Scholar 

  2. X. Li, F. Li and L. Fang, Korean J. Chem. Eng., 32, 2449 (2015).

    Article  CAS  Google Scholar 

  3. W. Jia and S. Lu, Korean J. Chem. Eng., 31, 1265 (2014).

    Article  CAS  Google Scholar 

  4. T.-D. Nguyen-Phan, V. H. Pham, H. Yun, E. J. Kim, S. H. Hur, J. S. Chung and E. W. Shin, Korean J. Chem. Eng., 28, 2236 (2011).

    Article  CAS  Google Scholar 

  5. M. B. Sen and S. Ghosh, Korean J. Chem. Eng., 34(7), 2079 (2017).

    Article  Google Scholar 

  6. W. Gao, M. Majumder, L. B. Alemany, T. N. Narayanan, M.A. Ibarra, B. K. Pradhan and P. M. Ajayan, ACS Appl. Mater. Interfaces, 3, 1821 (2011).

    Article  CAS  Google Scholar 

  7. W. Choi, J. Choi, J. Bang and J.-H. Lee, ACS Appl. Mater. Interfaces, 5, 12510 (2013).

    Article  CAS  Google Scholar 

  8. M. Safarpour, A. Khataee and V. Vatanpour, J. Membr. Sci., 489, 43 (2015).

    Article  CAS  Google Scholar 

  9. H.-R. Chae, J. Lee, C.-H. Lee, I.-C. Kim and P.-K. Park, J. Membr. Sci., 483, 128 (2015).

    Article  CAS  Google Scholar 

  10. R. Nair, H. Wu, P. Jayaram, I. Grigorieva and A. Geim, Science, 335, 442 (2012).

    Article  CAS  Google Scholar 

  11. R. Joshi, P. Carbone, F. Wang, V. Kravets, Y. Su, I. Grigorieva, H. Wu, A. Geim and R. Nair, Science, 343, 752 (2014).

    Article  CAS  Google Scholar 

  12. B. Vatsha, J. C. Ngila and R. Moutloali, J. Membr. Sep. Technol., 4, 98 (2015).

    Article  CAS  Google Scholar 

  13. Z. P. Smith and B. D. Freeman, Angewandte Chemie International Ed., 53, 10286 (2014).

    Article  CAS  Google Scholar 

  14. M. Moochani, A. Moghadassi, S. M. Hosseini, E. Bagheripour and F. Parvizian, Korean J. Chem. Eng., 33, 2674 (2016).

    Article  CAS  Google Scholar 

  15. Y. P. Tang, D. R. Paul and T. S. Chung, J. Membr. Sci., 458, 199 (2014).

    Article  CAS  Google Scholar 

  16. H. W. Kim, H. W. Yoon, S.-M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik and S. Kwon, Science, 342, 91 (2013).

    Article  CAS  Google Scholar 

  17. H. Li, Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H. J. Ploehn, Y. Bao and M. Yu, Science, 342, 95 (2013).

    Article  CAS  Google Scholar 

  18. P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Z. Xu and H. Zhu, ACS Nano, 7, 428 (2012).

    Article  Google Scholar 

  19. X. Zhao, Y. Su, Y. Liu, Y. Li and Z. Jiang, ACS Appl. Mater. Interfaces, 8, 8247 (2016).

    Article  CAS  Google Scholar 

  20. J. Wang, P. Zhang, B. Liang, Y. Liu, T. Xu, L. Wang, B. Cao and K. Pan, ACS Appl. Mater. Interfaces, 8, 6211 (2016).

    Article  CAS  Google Scholar 

  21. P. Sun, K. Wang and H. Zhu, Adv. Mater., 28, 2287 (2016).

    Article  CAS  Google Scholar 

  22. G. Liu, W. Jin and N. Xu, Angewandte Chemie International Ed., 55, 13384 (2016).

    Article  CAS  Google Scholar 

  23. L. J. Cote, F. Kim and J. Huang, J. Am. Chem. Soc., 131, 1043 (2008).

    Article  Google Scholar 

  24. M. Mulder, Basic principle of membrane technology, 2nd Ed., Kluwer Academic (1997).

    Google Scholar 

  25. Y. P. Yampol’skii and B. Freeman, Membrane gas separation, Wiley Online Library, 34 (2010).

    Book  Google Scholar 

  26. E. Albrecht, G. Baum, T. Bellunato, A. Bressan, S. Dalla Torre, C. D’ambrosio, M. Davenport, M. Dragicevic, S. D. Pinto and P. Fauland, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 510, 262 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Karimi-Sabet.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, F., Karimi-Sabet, J., Ghotbi, C. et al. Thin film graphene oxide membrane: Challenges and gas separation potential. Korean J. Chem. Eng. 35, 1174–1184 (2018). https://doi.org/10.1007/s11814-017-0339-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0339-z

Keywords

Navigation